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Outline
Background

� Trapping and cooling

� Laser cooling: applications and limitations

Buffer gas cooling: Techniques and applications
� Advantages over laser cooling

� Basic physical principles

� Technical challenges and solutions

� Trapping 1µB: Li, Cu, Ag

� Future Experiments:  Non-S state atoms and further cooling

Why am I here today?
� Transition to sustainable energy science

� Activities of PV@MIT
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Trapped Atom Science

� Study quantum behavior near absolute zero 

temperature

� Precision measurement

� Atomic clocks

� Quantum information

� Manipulate quantum states for computing and secure 

communication

� Simulate solid state systems

� High TC superconductors
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Trapping and Cooling 

Trapping requires cooling!

Trap depth
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Laser Cooling: A Common Approach

Ideally your atom is a two level system: After 
emission your atom is back where it started, 

waiting to be cooled further.

Red detunes laser
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Laser Cooling Limitations

Complex structure makes laser cooling a 
challenge for most atomic species 
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Buffer Gas Cooling

Not dependent on internal states.

You can cool all kinds of species (including molecules)!

But can you trap everything?
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Magnetic Trapping
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Magnetic Trapping
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Atom Trapper’s Periodic Table

Filled d-shell hydrogen-like atoms

LuYbTmErHoDyTbGdEuSmPmNdPrCeLa

RaFr

RnAtPoBiPbTiHgAuPtIrOsReWTaHfBaCs

XeITeSbSnInCdAgPdRhRuTcMoNbZrYSrRb

KrBrSeAsGeGaZnCuNiCoFeMnCrVTiScCaK

ArClSPSiAlMgNa

NeFONCBBeLi

HeH

High magnetic moment (µ � 5), 
slightly submerged shell isotropic atoms

Ground state could be magnetically trapped

Ground state has been magnetically trapped

Ground state has been trapped in a MOT

Excited state has been trapped in a MOT Buffer gas cooled but not 
trapped
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Basics of Buffer Gas Cooling

KT 1000≈

3He buffer gas

Paramagnetic AtomsmKT 100≈

Thermalization ~ 100 collisions in 
300µs

nBG = 1016 cm-3

Trapped Atoms!
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Limits of Buffer Gas Cooling

Although trapped…

� Thermally connected to 
walls by buffer gas 

� Atoms can undergo 
collisions to put them in an 
untrapped state
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BG Effects on Trap Lifetime

Log nBG

Thermal 
Isolation Load trap 
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BG Effects on Trap Lifetime

Some elastic collisions 

kick atoms over trap edge

Diffusion limited

Some atoms excited over 

the trap edge are de-excited 

back into the trap by 

additional elastic collisions

Log nBG
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BG Effects on Trap Lifetime

Inelastic collisions: 

Zeeman relaxation

Log nBG

Diffusion limited
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Elastic vs. Inelastic Collisions

Elastic

Inelastic

Still 
trapped

Not 
trapped
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BG Effects on Trap Lifetime

Some elastic collisions 

kick atoms over trap edge

Inelastic collisions: 

Zeeman relaxation

Log nBG

Diffusion limited
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BG Effects on Trap Lifetime

Some elastic collisions 

kick atoms over trap edge

Inelastic collisions: 

Zeeman relaxation

Thermal 
Isolation Load trap 

Valley of 

DEATH!

Log nBG

Diffusion limited
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Buffer Gas Cooling and Trapping 

Requirements
1. Cold non-magnetic buffer gas

� He thermalized by dilution refrigerator (~100mK)

2. Atomic/Molecular source
� Ablation, discharge, gas beam

3. Large magnetic field. 
� 4T superconducting magnet

� 2.7K trap depth ↔ η ~ 5-10

4. Method to remove buffer gas
� Fast cryogenic valve
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Buffer Gas Loading Scheme

Ablate target  ~1000 K

Thermalize and further 
cooling   ~150K

Open valve to 

remove buffer gas

Study atoms

Further evaporative 
cooling
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Experiment Schematic

Spring actuated fast 
cryogenic valve

Coil 
current

Coil 
current

Charcoal sorbtion pump
Solid Sample 

Precursers

Ablation laser
532nm Nd:YAG

Spring operated cryogenic 

valve

Mirror

Buffer gas is loaded via 
desorbtion in a “waiting 
room” (not shown)

Detection Laser –

Absorption Imaging

Whole assembly is 

a heat sunk to a 

dilution refrigerator. 

G10 cell wrapped in copper 

wires.
4T Magnet

*Independently controlled

coils

Bucking Field 

Magnet

Sapphire

Window
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Dilution 
refrigerator 

mixing chamber

Valve  
chamber

Experimental cell 
with pump out 
and trapping 

regions

Pulley box for 
pull line

Heat links
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Absorption Spectroscopy
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Li Trapping:  1µB S-state atom

Demonstrated first buffer gas cooling and trapping of 1 µB atoms!



EETD at LBNLApril 8, 2008

243327327λ(nm)

794729Z

4f145d106s4d105s3d104s
Ground state 

config.

AuAgCu

� All are hydrogen like 2S1/2 ground states.  

� Atomic masses are more favorable than Li for trapping.

The Noble Metals



EETD at LBNLApril 8, 2008

Trapped Ag, Cu 

Probe 2S1/2 →
2P3/2

(325 nm)

Cu 1/e lifetime ~ 5 s

Probe 2S1/2 →
2P3/2

(328 nm)

Ag 1/e lifetime ~ 2.5 s
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Elastic vs. Inelastic Collisions

Elastic

Inelastic

Still 
trapped

Not 
trapped
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S-state vs. non-S-state

non-S-state: 
Tough to trap
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Elastic to Inelastic Ratio

Inelastic = trap loss

Elastic = thermalization

in

el

σ

σ
γ =

γ > 104 for possible trapping

thel

d
vnσ

τ
1

=

Ratio is an indicator of anisotropy.

Or how S-like a many-electron atom is!
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BG Effects on Trap Lifetime

Some elastic collisions 

kick atoms over trap edge

Inelastic collisions: 

Zeeman relaxation

Log nBG

Diffusion limited
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Ag Trap Lifetime vs. τd
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Temperature Dependence

γAg ~ T6

Not 
expected

γAg, γCu > 106

S-state 
behavior 
confirmed

Brahms, N., et. al. -- submitted.
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Conclusion

Successfully trapped 1µB Li, Cu, Ag using 
buffer gas cooling

1. Lithium
• >1012 atoms trapped at T ~ 150 mK

• Lifetimes ~ 200 seconds

2. Cu, Ag
• >1012 atoms trapped at T < 500 mK

• Lifetimes ~ 5 s  

• Anomalous Ag inelastic collision dependence 
on temperature
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Removal of the Buffer Gas

� Thermal isolation

� Lengthen trap lifetime 

� Study intra-atomic collisions

� Evaporative cooling to possible quantum degeneracy

LuYbTmErHoDyTbGdEuSmPmNdPrCeLa

Rare Earths

Non S-state   -- but repressed anisotropy1

High magnetic moments

1Hancox, C., et. al.  Nature, 431, 281 (2004).
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Future Experiments

Intra-species collisions E

Evaporative 
cooling
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Why am I here today?
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Crystalline silicon

• Increase efficiency

• Defect engineering

• Device architecture

• Processing and manufacturing

Near Term

Intermediate Term

Thin Films

• Novel materials

• Abundant

Thin Silicon Project

PV @ MIT – Buonassisi Lab

Images courtesy of Tonio Buonassisi.

All things PV!
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Femtosecond structured silicon

fs - laser

Si wafer

Silicon turned 
black!

C. H. Crouch, et. al. J. App. Phys. A, 79, 1635-1641 (2004).

SF6
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Thin (Black) Silicon

Use tools from 
defect 

engineering to 
figure out why 

this is 
happening!

Can we use if 
for PV 

devices??
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More Information

For more information about photovoltaic and 
energy research at MIT

http://pv.mit.edu

http://web.mit.edu/mitei


